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In this paper we extend the work of Budd and Wheeler (Proc. R. Sot. London A 417, 389, 
1988), who described a new numerical scheme for the solution of the space charge equation 
on a simple connected domain, to multiply connected regions. The space charge equation, 
V (A@ VCp) = 0, is a third-order nonlinear partial differential equation for the electric poten- 
tial @, which models the electric field in the vicinity of a coronating conductor. Budd and 
Wheeler described a new way of analysing this equation by constructing an orthogonal coor- 
dinate system (rj, 5) and recasting the equation in terms of X, y, and A@ as functions of 
((p, 5). This transformation is singular on multiply connected regions and in this paper we 
show how this may  be overcome to provide an efficient numerical scheme for the solution of 
the space charge equation. This scheme also provides a new method for the solution of 
Laplaces equation and the calculation of orthogonal meshes on multiply connected regions. 
f:’ 1991 Academic Press, Inc. 

In this paper  we extend a  new numerical scheme [6] for the solution of the space 
charge equation, V . (d@ VCp) = 0, for the electric potential 4, in two spatial dimen- 
sions which arises in the study of steady electric fields in the neighbourhood of a  
coronating conductor, to mu ltiply connected regions. In contrast to an  electrostatic 
field where the charge density is everywhere zero, the fields in this situation have 
a  nonzero charge density which is known as the space charge. Such ionised fields 
arise when there is a  high DC electric field due  to a  conductor ma intained at a  high 
electric potential. This field causes a  local breakdown of the air mo lecules into 
positive and  negative ions and  a  glowing corona forms around the conductor. The  
ions which have the opposite sign to that of the conductor are attracted onto its 
surface whereas those of the same sign leave the neighbourhood of the corona and  
enter the med ium surrounding the conductor creating a  space charge. Experiments 
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indicate that the region occupied by the corona is very thin and thus a macroscopic 
description of our system consists of studying the field derived from a single ion 
species with the thin corona acting as a source of these ions. This, so-called space 
charged situation has been the subject of a number of papers. Early references 
include Townsend’[29], Felici [ 143, Atten [4], and Khalifa [ 191 with more recent 
work by Janischewskyj and Gela [17], Morrow [21], Sigmond [24], Abdel-Salam 
et al. [l, 23, Okubo et al. [22], Sunaga and Sawada [27], Smith [26], Budd [7], 
Hutton [15], and Varley [31]. 

The partial differential equation that describes this field may be expressed as an 
elliptic and a hyperbolic equation coupled together in a nonlinear manner. It is the 
mixed type of the space charge equation that provides the main difficulty in the 
construction of an efficient numerical algorithm. This is because such an algorithm 
must cope with both the features of hyperbolic systems, such as shock formation 
and propagation of initial data, as well as the global and smoothing properties of 
elliptic systems. Thus in much of the earlier numerical work many approximations 
were made concerning the distribution of the characteristics in order to simplify the 
problem. One in particular, known as Deutch’s approximation (see [23]), assumes 
the field lines to be the same as the field lines obtained by finding a harmonic field 
with zero space charge. It will be evident from the calculations presented here that 
this approximation is grossly in error for the field lines in a multiply connected 
region. In contrast, more recent work on the numerical solution of the space charge 
equations has employed finite element techniques. Although this can be very suc- 
cessful (see [2, 15]), it is also expensive, requiring a special treatment at the shock 
boundaries and a careful mesh refinement close to the high tension conductor. The 
method described by Budd and Wheeler [6] is designed to exploit the mixed type 
of the space charge equation by treating the elliptic and hyperbolic parts separately 
using appropriate numerical techniques within an iterative framework. This is done 
by identifying the characteristics of the system as the electric field lines which are 
used to construct an orthogonal coordinate system where one of the coordinates 
describes the characteristics. Thus the hyperbolic part of the system is integrated 
directly along the characteristics and the elliptic part is solved using a finite 
difference scheme. The method has the further advantage that the orthogonal 
coordinate system is body fitted and so deals with arbitrarily shaped domains by 
transforming them to the unit square. However, this transformation does depend 
crucially on the connectedness of the domain and in this paper we demonstrate how 
the singularity in this transformation which occurs when the domain is multiply 
connected may be dealt with. 

The fields arising from an ionised gas are important in the study of DC trans- 
mission lines, cyclone separators, electrostatic scrubbers, granular bed filters, and 
electrostatic precipitators used in electricity power stations for the removal of dust 
from furnace gases. A summary of other industrial applications of electrostatic 
phenomena is given by Cross [ 111. In many cases realistic geometries are multiply 
connected, for example, an electrostatic precipitator comprises, in general, of an 
array of thin coronating electrodes at high potential between two parallel earthed 
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plates. This geometry is illustrated in Fig. 1 and it is evident from this figure that 
it is multiply connected. It has been shown recently [S] that on such multiply 
connected regions the solution to the space charge equation may have solutions 
in which the gradient of the space charge density is discontinuous; this has been 
observed experimentally in a test rig at the Central Electricity Generating Board, 
CERL, Leatherhead. 

In Section 2 we describe a simple model of an ionised gas and derive the space 
charge equation. Further, we pose two problems which relate to simple models of 
an electrostatic precipitator and an experimental rig at the National Bureau of 
Standards, Maryland, USA [20] which provide different multiply connected 
geometries on which to test our numerical scheme. In Section 3 we introduce the 
hodograph transformation used by Budd and Wheeler [6] for simply connected 
domains and describe in detail the algorithm based on this transformation for the 
multiply connected domains considered here. In Section 4 we exploit the fact that 
the solution of the space charge equation is harmonic when the space charge 
density is everywhere zero. Thus we compare results from our numerical scheme in 
this special case to harmonic solutions generated from an algorithm that employs 
the Schwarz-Christoffel conformal map and also with a boundary integral method. 
In Section 5 we present results of our method for the two model problems posed in 
Section 2. Finally, in Section 6 we give our conclusions. 

2. THE GOVERNING EQUATION 

We consider the electric field in the vicinity of a coronating conductor. In this 
situation the corona formed on the conductor, due to the electrical breakdown of 
air in the presence of the locally high electric field, provides a source of electric 
charge. This charge migrates under the influence of the electric field to give rise to 
a nonzero space charge density in the neighbourhood of the conductor. In this 
situation the current j is described by 

j = ME, (2.1) 

where p is the space charge density, E is the electric field and p is the mobility 
of the charge, which is assumed constant and for typical applications 
p - 2 x 10-4m2 VP ‘s- ‘. We consider the steady situation, in which case from 
Maxwell’s equations V A E = 0 and we therefore deduce the existence of an electric 
potential (p. In terms of this potential E = -V@ and p = -sO d@, where E,, is the 
permittivity of air. Finally, conservation of electric charge gives 

V.j=O. (2.2) 
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Combining Eqs. (2.1) and (2.2) we obtain 

v~(A~v@)=o, (2.3) 

which we shall refer to as the space charge equation. This is a third-order nonlinear 
partial differential equation for @ which we consider here in two spatial dimensions. 
The characteristic determinant associated with it has two imaginary roots 
dy/dx= +i as well as a real root dy/dx = (px/(pY. Hence there is a one-parameter 
family of real characteristic curves which are orthogonal to the equipotentials and 
so represent the electric field lines. The space charge equation may be written as 

E. G-I -= 
ds 

-IV@I-‘, on $=p, 
Y 

(2.4a) 

p= --co A@, (2.4b) 

where s is the arclength along a field line measured such that s increases with (p. 
Thus we may decompose (2.3) into an elliptic Poisson equation coupled to the 
characteristic ordinary differential equation in a nonlinear manner. We note that 
the special case p = 0 is a solution of (2.4a), in which case cp is a harmonic function. 
The numerical solution of (2.3) on simply and one-connected domains, using a 
hodograph method, has been considered previously by Budd and Wheeler [6]. 
Here we extend the hodograph method to multiply connected domains; specifically 
we consider a domain of the form illustrated in Fig. 1. However, we consider two 
sets of boundary conditions associated with this domain which gives rise to two 
different problems for Cp, which we refer to as Problems I and II. 

Earthed Plate 

Conductors 

4 b 

2d 2d I 

t 
Earthed Plate 

FIG. 1. A schematic diagram of an electrostatic precipitator. 
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Problem I. We consider a periodic array of conductors all at the same potential 
situated midway between two parallel plates at a lower potential. The conductors 
have alternately zero and nonzero space charge specified on their surfaces. From a 
consideration of the symmetry and periodicity present in this problem we pose the 
following equivalent problem for the electric potential on the subdomain d 

dp-’ 
-= pGp--L, 

ds 

P=&, 

XEW, 

P =o, cp =o, XEdQl, 

P=Po (>O)Y cp=o, xEaa3, 

% = 0, x E aa, v ac2,, 

V”=O, xEac22,uasz,, 

(2.5) 

where we have nondimensionalised (p with respect to the potential difference 
between the conductors and the parallel plates, @, by defining cp = 1 - Cp/@, and the 
distance with respect to half of the distance between the centres of the conductors, 
d. Hence the space charge is nondimensionalised by defining p = cO@p/d2 and so 
p. = PO dZ/.so@ is the nondimensional surface charge on aR, and PO is the corre- 
sponding dimensional quantity. We have chosen these scalings as it proves 
convenient in our numerical scheme to arrange for cp to increase, away from the 
conductor on which the space charge is prescribed. The problem is shown diagram- 
matically in Fig. 2(i) in which aQj, i= 1, 6 are defined. The constants c1 and /I are 
the nondimensional conductor radius r/d and the aspect ratio h/d, respectively. 

The motivation for the study of this problem derives from a simple model of the 
electric field in electrostatic precipitators used to remove fly ash from coal fired elec- 
tric power station flue gases. In these devices an array of high potential coronating 
wires are situated between parallel earthed plates through which the flue gases are 
passed. This results in the precipitation of fly ash on the plates and hence the 
cleansing of the flue gas. The geometry shown in Fig. 1 corresponds to that of an 
experimental test precipitator at CERL, Leatherhead, England. Experimental 
results from this device are presented in Corbin [9]. 

Problem II. We consider a single cylindrical conductor placed between two 
parallel horizontal plates. The space charge density on the upper plate together 
with the electric potential is given. On the conductor the electric potential is 
prescribed to be equal to that of the upper surface and the space charge density 
is set to zero. The lower surface is grounded and so here we only prescribe the 
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(ii) 

(0 ,-Y+.(Y) 
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FIG. 2. (i) and (ii) The domain fi for the Problems I and II, respectively 
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electric potential to be zero. The mathematical statement for the non dimensional 
potential cp is 

dp-’ -= IVcpl-‘, 
ds 

XEQ 

p=&, 

p=o, q =o, XE&2,, 

cp.\- = 03 x~asz,uaf2,uaf22, 
P=Po (>O), cp=o, xEaf23, 

cp’l, xEasz,, 

(2.6) 

where we have employed the same nondimensionalisation as before. The problem 
is illustrated in Fig. 2(ii) where the boundaries aQi, i = 1, 6, are also defined. This 
problem serves as a simple model of an experimental rig employed at the National 
Bureau of Standards, USA [20] to investigate the effect of electrical measuring 
devices on space charge electrostatic fields. It also is related to the electrode 
conliguration in a thermionic tetrode. 

In both of the above problems we have prescribed the space charge density on 
the high potential conductor. In many applications this conductor acts as a source 
of space charge through the mechanism of corona discharge. This is commonly 
modelled by prescribing the electric field intensity at this conductor surface to be 
constant at the smallest value required for corona onset, Kaptzow [18], which for 
dry air is approximately 3 MVm ~ ‘. The numerical scheme that we describe in this 
paper can be simply modified to deal with this situation, as noted in Section 3.2. 

3. THE NUMERICAL METHOD 

Our numerical method is based upon a hodograph transformation of the space 
charge equation. Below we briefly describe the transformation. For a more detailed 
account the reader is referred to Budd and Wheeler [6]. 

3.1. The Hodograph Transformation 

Part of the difficulty in obtaining an accurate numerical solution to the space 
charge equation lies in the fact that the characteristic equation is to be integrated 
along characteristic curves which are themselves part of the solution. This is related 
to the underlying mixed type of the space charge equations indicating that the solu- 
tion has properties associated with both elliptic and hyperbolic partial differential 
equations. The elliptic part is a statement that a particle of charge instantaneously 
sets up an electric field everywhere in the medium, whereas the hyperbolic part 
arises from the finite velocity at which charged particles move under the influence 
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of the electric field. To overcome this difficulty we define a new variable $ such that 
the level curves of I+$ are everywhere orthogonal to the level curves of cp. Thus we 
define II/ by 

vcp~v*=o, (3.1) 

and so I,$ acts as a label for the characteristics. The identity (3.1) is in general 
satisfied if 

(3.2) 

where A is a function which at this stage is undetemined. We now exploit this 
description of the characteristic curves and recast the space charge equation (2.3) 
along with (3.2) in terms of cp and II/ as independent variables, with x, y, A, and p 
as the dependent variables. It can be shown, Budd and Wheeler [6], that this 
procedure gives 

A= 4+)/P, P zo, 

2 = a(*), p=o, 
(3.3) 

where a($) is function of a single variable and the space charge equation (2.4) 
becomes 

(3.4a) 

a,=x;+ y;, for P E (0, 02 ), (3.4b) 

where 

i 
l/P, P zo, g= 
1, P = 0, 

along with the appropriate transformed boundary conditions. The function a(+), 
and hence A, are dependent upon the manner in which II/ is specifted on the bound- 
ary of the domain. These functions may be regarded as Lagrange multiplier terms 
deriving from the orthogonality constraint (3.1) and they are also related to the 
current flowing in the gas. Indeed, if we consider two field lines labelled $1 and I/* 
then the current, Z, flowing across any equipotential surface orthogonal to these 
lines is precisely 
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The above transformation is only valid provided it is invertible, i.e., the Jacobian, 
18(x, y)/a(cp, $)I E (0, co). In general this is not true and it fails if the electric field 
strength IEl = (cpz + ~.~)1i2 becomes zero. However, it is known [S], that there 
exists a maximum prmciple for cp. This in conjunction with simple topological 
arguments based on Morse’s theory can be used to establish that the above condi- 
tion will be violated at only one point in the domain of problems I and II. At this 
point cp will have a saddle point and we denote the value of cp there by ‘p*. (This 
saddle point is evident in the results of our calculations presented in Figs. 8,9, 10). 
It is the presence of the saddle point that provides the additional complication that 
must be overcome to apply the hodograph method to multiply connected regions. 
In Fig. 3(i) we illustrate the images of Sz, SC2,, i= 1,6, denoted by Q’ and &2,!, 
respectively, under this transformation. The mathematical statement of each 
problem consists of the transformed governing equations (3.4) allied with the 
appropriate boundary conditions which are 

Problem I. 

y=x*=o, (r~, was 

(3.5) 

Problem II. 

P =o, x+-2h($)), y = y + ~1 sin i (1 - 2/z($)), (CP, wa4, 

y,=x=o, (CP, II/) E asz; u af-4, 
x = k(l) - +,, Y = 0, P = PO? (CP, tw~2;, (3.6) 

x= 1, y,=o, h bw52k, 

y= 1, x,=0, (CP, waS2;. 

Here f, g, h, k are suitable monotonic functions from [0, $1 to [0, 11 that relate 
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$ to the geometry of the domain in physical space by specifying II/ in terms of arc 
length along the conductors. 

We note that in both cases the transformed domain Q’ in (cp, $)-space consists 
of the unit square penetrated by the branch cut r, defined by r, = 
{ (cp, $1; cp E CO, cp*l, II/ = i>, where ‘P* must be determined as part of the solution. 

The advantages of this transformation are 

(i) it maps curvilinear domains in physical space to the same unit square in 
(cp, $)-space albeit with a branch cut. 

(ii) The characteristic curves in physical space are transformed to known 
fixed straight lines $ = const, allowing the characteristic equations to be dealt with 
more easily. 

(iii) The functions f, g, h, and k are not unique for a given problem and so 
may be used to distribute the II/ coordinates in physical space as desired. In 
particular, we can effectively reline the grid by a suitable choice of these functions. 

(iv) The technique determines cp and $ and hence generates an orthogonal 
grid defined by (cp, $) coordinates in the physical domain. Thus this method 
provides a new and efficient way of generating orthogonal meshes and is related to 
the work of Thompson et al. [28] and Arina [3]. 

In both Problems I and 11 p is prescribed to be a zero only on &2;. From the 
characteristic equation (2.4a) we therefore deduce that p E 0 in the subdomain 
CYi = [0, l] x [0, i) and so cp is harmonic on a’,; hence D z 1 on Sz’, . The constraint 
that p,, > 0 and hence that c is positive on a!&, along with the characteristic equa- 
tion (2.4a), implies that c is strictly positive on 52; = [0, 1) x (&, 11. These con- 
siderations indicate that the solution on the curve r; = { (cp, II/): (p* < cp < 1, $ = i} 
will be nonsmooth. From the analysis given in Budd, Friedman, McLeod, and 
Wheeler [S] it is shown that p has a discontinuous derivative across the curve r;. 
Hence there is a weak shock on I-;. To deal with this situation we require 
appropriate shock conditions for x and y on r;. These are obtained by insisting 
that x, Y, x4, and y, are continuous across r;, from which we deduce from (3.4b) 
that 

and 

A!L 
* = l/2+ Y* i= 1/2+ 

=--- 
A(% ti) $=1/2- 4% $1 ti=,,2- 

= 0, (3.7) 

for cp E [q*, 11. These conditions augment the boundary conditions (3.5) and (3.6) 
of Problems I and II, respectively. 
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We now consider the numerical solution of Problems I and II using a finite 
difference method. 

3.2. The Finite Difference Scheme 

The expression of the space charge equations in the transformed space given in 
(3.4) naturally leads to an algorithm that treats the hyperbolic characteristic 
equations (3.4b) and elliptic system (3.4a) separately. The we have adopted the 
following two-stage algorithm employing a fixed point iteration 

1. Guess x, y, a, ‘p*. 

2. Stage I. Update 0 by numerically integrating (3.4b) in the region 

3. Stage II. Update x, y, a, ‘p* (and hence A) by numerically solving the 
system (3.4a). 

4. Test for convergence. If converged; stop; otherwise; repeat steps 2 to 4. 

One of the purposes of the hodograph transformation is to deal with the charac- 
teristic curves by mapping them to the fixed straight lines $ constant in 52’. Thus 
the numerical integration of the characteristic equation in stage I is straightforward. 
Another funtion of the transformation is to map the physical domain to a rec- 
tangular domain. This simplifies the numerical solution of the elliptic system (3.4a) 
and allows us to implement a finite difference scheme in stage II. However, the 
branch cut present in Q ’ along with the determination of a(+) and ‘p* presents a 
major difficulty. 

As ‘p* is part of the solution, the extent of the branch cut is undetermined and 
so presents a complication in defining a finite difference mesh. We overcome this by 
adopting the linear transformation 

(3.9) 

which maps the branch point to I$ = k. For simplicity of notation we henceforth 
omit the tilde, in which case the governing equations (3.4) become 

Y, = Y(cp) M$b,, 
x3 = -Y(cp) MrCI) Y,, 

(3.10a) 

(3.10b) 

and 
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This transformed domain is shown in Fig. 3(ii). 
We now consider our finite difference mesh. It proves necessary to employ two 

different uniform meshes, both having grid spacings 6~ and S$ in the cp and $ 
directions, respectively. On one, which we refer to as grid CI we define the nodes at 
which we approximate x and y. On the other, which we refer to as mesh j3, we 
approximate 0 and a($). The variables XTj, YTj, A;, and .Ztj denote the finite dif- 
ference approximations to the nth iterates of x, y, a, and 0, respectively, at the node 
(i, y) of the appropriate mesh. The two meshes are centrally offset from one another 
as shown in the finite difference molecule in Fig. 4. 

The branch cut r,‘, along with the two shock conditions on Z-i, necessitates that 
we devote two consecutive rows of mesh c1 to represent the solution on r,’ u r;. 
The two meshes are shown in Fig. 5, also serves to define the various parameters 
Nrnid, Nb, Nbc, Nbr19 and N, associated with both meshes. The nodes in the adja- 
cent rows defined by j= NbC and j= NbCl of mesh CI approximate x, y, and a on 
either side of r,‘u r;. On the rows defined by 1 <i< N,,. of mesh /?, ZTNhr is 
undefined due to the presence of the branch cut. The fact that p = 0 on Sz; implies 
from (3.3) that r~ z 1 there and, so, we set CT, = 1 for 1 & id Nm, 1 <j< NbC, n B 0. 

We now describe stages I and II in detail: 

Stage I. This stage updates c in Sz; from the current iterates of x, y, a, and (p* 
by integrating the characteristic equation (3.10b), using the initial data on g given 
at cp = 0. Because we are constrained to working on a fixed mesh we employ the 
trapezium rule at interior points of Q;, which is 0(/z*) accurate, allied with a back- 
ward difference at the initial step. Thus 

=Yi 
D(XTi) yi+ D(Xr+ I,j) ’ + D( YFj) + D( Yi+“l,j) * 

4@ I [ 4dV 
] }, (3.11) 

for i = 2, N6 - 1, and Nbrl <j < N, - 1, where D is the difference operator defined 
by D(S~j)={S~+,,,i+S”+,,,+~-(S~j+S:,+~)}, andy,=y((n-1)h). 
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FIG. 3. (i) The transformed domain. (ii) The transformed domain after application of the second 
transformation (3.9). 
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0 
(ij+l) 
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0 
(i-1.j) 

0 
(id 

(i-lj-1) 
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(ij-1) 
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FIG. 4. A finite difference molecule indicating the relation between meshes a and /? indicated by W  
and 0, respectively. 

i=N 
mid 

i q N$, 

FIG. 5. The relationship of the finite difference meshes to the transformed domain. Here meshes c( 
and b are indicated by W  and 0, respectively. 
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Stage II. At this stage we update the estimates of x, y, a, and ‘p*. We proceed 
in two steps. In the first, which we refer to as II(i) we solve elliptic problems for 
x and y and in the second we update a and (p*. 

Step II(i). The elliptic system (3.10a) can be combined to give 

(3.12) 

We apply a second-order finite difference formulation of (3.12) using mesh c( and 
based on the molecule shown in Fig. 4. Thus 

Yi+l~2(Zk+*,;~Z~j)"~~~Yi-1/2(Z~j~Zf(~~,j)/7~~I,~ 

e* 
+(zfij+~~z~j~i(Yi;i~j)~(z~j~z~j-~)i(Yiji~j-~)~o 

W' 
(3.13) 

where k = 1,2. We define Z:, by Zi,j= XTj, Zfj= YFj, ;ii,j= (CTj A;,+ 
z;j- IA;,-, )/2, and 2 i, j = (Cz jkl j + L’:- i, iAy_, , j)/2. The boundary conditions on 
x and y ‘are simple Dirichlet or ieuman conditions; we apply them by employing 
a standard second-order finite difference formulation [25] at the external boun- 
daries, 8Qi, i= 1, 6. On the branch cut boundary &Sk we have similar boundary 
conditions which are discretised in the same way on the two rows j= N,,. and 
j= NhC, for 1 < i-c Nhr. On the remaining nodes of these two rows the branch point 
is treated and the shock conditions (3.6), (3.7) are employed. At the two nodes 
i= Nhrr j= Nbcr Nhrl, which both correspond to the branch point, we apply the 
conditions that y = 0 and x~) = 0 at the node i = Nbr, j = N,,. and continuity of x 
and y at the other in a straightforward manner. At the remaining nodes on the row 
j = N,,. we similarly employ continuity of x and y. For those of row j= NbCl we 
invoke the shock conditions (3.7). As xJ/ and y,,, are discontinuous across r; we use 
second-order, one-sided differences to approximate these $ derivatives on either 
side of r2. This leads to the discretisation 

(3.14) 

for NhC < i < Ncp. 

5x I.‘971 I-2 
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The above finite difference scheme yields a system of linear equations for both x 
and y of the form 

AkZk = b 3 k= 1, 2, (3.15) 
where Zk = (Z:,,, ZT, 2, . . . . Z&N,)T, and Ak are sparse square matrices or order 
N4 x N,. The presence of the branch cut f; and the shock boundary r, ensures the 
A’ and A* have a nonstandard structure and so Stone’s Implicit Procedure [16] 
which was employed for solving the space charge equations on simply connected 
domains, Budd and Wheeler [6], cannot be used here. Instead, we have numeri- 
cally solved (3.15) by a direct method; in particular, we used NAG routines 
FOlBRF and FOIBSF which enables us to exploit the fact that the sparsity pattern 
is the same at each iteration. This leads to a considerable increase in the speed of 
execution of the algorithm. We now go on to consider the updating procedure for 
a and ‘p* in step II( 

Step II( The current iterates of x and y obtained in the previous step 
approximate the solution of the elliptic systems (3.12) and therefore do not, in 
general, satisfy the original orthogonality conditions (3.la) from which they are 
derived. At this step we employ (3.10a) to update a($) and (p*. The presence of the 
branch cut again presents a difficulty because of the singularity associated with it. 
It may be shown [S] that p vanishes at the branch point and hence near this point 
cp(x, y) satisfies an approximation to Laplace’s equation. A simple calculation then 
shows that (p(x’, y’) %x1* - y’* and It/(x’, y’) % 2x’y’ log x’, where x’, y’ are the x 
and y coordinate distances from the saddle point in the region in which the space 
charge is nonzero. We invert these two expressions to determine the local behaviour 
of x’ and y’ in terms of cp and $ to obtain the expressions 

XI 
xqjz~ Y,- -& 

, log x’ , log x’ 
(3.16) 

x* N Y Zs’2 ) Y+“X - s t2 ’ 

and 
(7 - log x’, as x’, y’, s’ + 0, 

where s’ = J xl2 + y’*, thus x+ and y, are singular at the branch point. Hence any 
estimate of a($) made directly from Eqs. (3.10a) will be ill-conditioned near the 
branch point. However, we overcome this by estimating a($) in two ways, both 
integrals of (3.10a). These are 

where w(cp, II/) is a suitable weighting function such that w(cp, I+$) N (cp - i)‘, cp -+ 4. 
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We use an integral formulation to reduce the errors associated with the numerical 
differentiation involved in approximating x+ and x4. Further, we choose to evaluate 
px,, as the above local analysis at the branch point indicates that this is less 
singular than x$ alone. The weighting function is introduced to further reduce 
numerical errors associated with the singularity in the gradient of pxti. In our 
numerical scheme we evaluate the integrals using the trapezium rule. The associated 
numerical error is proportional to (w~x,),~ and so the error with the above choice 
of weighting function is proportional to (cp - 4) ~ “2 close to the branch point. Using 
a higher power of (cp - i) for the weighting function may be expected to reduce this 
error but this has not been found to be the case in our calculations due to the 
coarseness of the mesh close to the branch point. 

In order to update a($) we construct three different estimates of a($), denoted 
by a’($), i= 1, 3, from 

u’(+)= CP”oki + lzil IiCP + lJil 1 (3.18) 

where 4=f:; w(cp> $1 PL h/j:; w(cp, II/) &, Ji=j:; w(cp, $) mW~:; w(cp, II/)&, 
i= 1, 3, where L,=L,=O, L3=U,=U2=& U3=1, f,-f3zxxIL, fi-yi, 

g, = g, = Y*L, g, = x$5, and p E [0, 1 ] is a relaxation parameter, typically taken to 
be 0.25. Thus a’($) and a’($) are estimates of a($) derived from the region 
0 < cp < $ and a’($) from 4 < cp < 1. A further consideration of the boundary condi- 
tions on %&, X?k, and ri’ for Problem I indicates that u’ is good estimate of a($) 
away from the branch cut and a2 is a good estimate near the branch cut. For 
Problem II, similar remarks apply. However, for clarity we limit our detailed dis- 
cussion below of this stage of the algorithm to Problem I. Thus to obtain a single 
estimate of a($) from the region 0 < cp < 4 we take a weighted combination as 
follows: We define c = 2 l$ - $1 and o(c) = c4[3 - c’]; then we take 

i(ti)=4i)a’(lC/)+ Cl -w(i)1 a’(+) 

as our new estimate of a($). In constructing the above estimates for a($), namely 
ri(cp) and a’(q), we determine AT (which is defined on mesh fl) by using standard 
second-order finite differences, using the adjacent nodes on mesh ~1, to determine 
the various derivatives of x and y required in the integrals Ii and Ji, i= 1, 3. It 
remains to construct the new estimate for (p* and a single new estimate for a($). 
We update ‘p* by insisting the two estimates ci and u3 are continuous at the branch 
point as cp increases through 4. To do this we recognise that both ci and u3 are 
linearly dependent on cp * through y(q). It is easily shown that this continuity 
requirement yields 

where cp’ is a new estimate for (p*. In practice the branch point is represented as 
a node in mesh c1 and so we use quadratic extrapolation to estimate u3 and ri at the 
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branch point from both the regions $ < f and $ > 4, which in turn yields two 
estimates for cp’ which we denote cp\ and cpl,, respectively. We calculate a new 
single estimate from 

and finally we update a($) from 

and hence /i;, from the identity i = a($)g. 
As in Section 2, for practical applications it is preferable to prescribe the electric 

field at the conductor surface at a critical value E*, rather than the space charge 
density. To achieve this we modify Stage I of the algorithm described here by 
making use of the identity 

ds 
-=aolE*, 
de 

where s is the arclength along the conductor surface, which is derived in Budd and 
Wheeler [6]. This allows, at Stage I, a new value of u to be estimated along the 
conductor surface by 

zn -Ed%“-’ 
%J 

I / 

A;;;‘, 
dtii I 

which replaces the initial value of cr (which was previously prescribed) for the 
characteristic equation (3.4b). 

4. A TEST PROBLEM 

As noted earlier the solution of the space charge equation is harmonic when po, 
the space charge density on the conductors is zero. Thus in this special case the 
method described above provides a new technique for solving Laplace’s equation 
on a multiply connected domain. The only modification required is to omit stage I 
of the algorithm so that u E 1 and hence p = 0 everywhere on the domain. In this 
section we exploit this special case to provide a test on our algorithm. In particular, 
we consider a modified version of Problem I in which p0 = 0 and the conductors 
dQ, and 80, are replaced by squares of side length 2d. Thus we have to solve 
Laplace’s equation on a polygonal T-shaped domain and so we employed the 
Schwarz-Christoffel conformal transformation 
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. 

FIG. 6. The Schwarz-Christoffel transformations and associated complex planes employed in the test 
problem described in Section 4. 

which maps the unit disk in the complex z-plane to half of the T-shaped domain 
in the complex w-plane as shown in Fig. 6. The constants bk, k = 1,6, are the 
exterior angles of the polygon in the w-plane. The remaining constant C and prever- 
tices zk, k = 1,6, were determined numerically using the algorithm SCPACK due to 
Trefethen [30]. A further Schwarz-Christoffel map f*(z) was employed to map the 
unit disk to a rectangle in the i-plane as shown in Fig. 6. In this way the solution 
was determined, the value of cp* being given by Im(w,) and the electric field by 
f;(z’)/f;(z’). The results from SCPACK were double-checked against the NAG 
algorithm D03EAF which employs a boundary integral method and were found to 
be in satisfactory agreement. We found that the NAG algorithm employing 300 
points on the boundary took approximately the same amount of CPU time as our 
method. In Table I we compare the values of (p* obtained by our method using a 

TABLE I 

Hodograph method 
I (22 x 44 grid) SCPACK 

0.03125 0.703716 0.763216 
0.0625 0.672522 0.709043 
0.125 0.607674 0.622887 
0.25 0.464637 0.467639 
0.3 0.404260 0.405955 
0.4 0.282137 0.283525 
0.5 0.167246 0.169667 
0.6 0.076649 0.077716 
0.7 0.030590 0.021015 
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6 - I 

5 - 

1 - 

0 I , 1 , , , , , 
0 0.2 0.4 0.6 0.8 1 

Arclength 

FIG. 7. A comparison of the calculated values of the electric field on the square conductor of side 
0.6 between the Schwarz-Christoffel technique employing SCPACK [30] denoted by the solid curves 
and our method indicated by 0. Here s is the arclength along the conductor measured in an clockwise 
sense from the point (0,0.3) divided by 0.6. 

22 x 44 grid to those obtained by SCPACK for different values of d. In general the 
agreement is good, although for small values of d the disparity increases. However, 
we consider this test problem to be a severe test of our algorithm due to the 
singularity in the electric field present at the corner of the square conductors; the 
severity of which increases as the size of the squares decreases. This factor in itself 
may account for the worse agreement with SCPACK at smaller values of d. In 
Fig. 7 we compare the electric field at the edge of the square conductor obtained 
by our method and SCPACK. These are in satisfactory agreement showing a maxi- 
mum error on the vertical side of the conductor; {x = 0.3, 0 < y d 0.3). We attribute 
this to the proximity of the saddle point which is closest to this side. Overall, 
however, the error is the order of l-2%. The values of the electric field obtained 
by the NAG boundary integral method were in better agreement with SCPACK 
except near (0,0.3) and (0.3,0), where it was in error by approximately 30%. 

5. RESULTS 

In this section we present results from our numerical calculations for both 
Problems I and II. All the calculations were performed using a 22 x 44 grid with the 
functions A g, h, k defined to be f($) = g(l//) = h($) = k($) E 2$ and took at the 
most 20 cpu min on a VAX 1 l/780 to converge to within an error of less than 10 ’ 
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(iii) 

FIG. 8. (i)(a) The field lines and equipotentials for Problem I and (b) the corresponding 24 equally 
spaced contours of space charge density for the case p = 10. (ii)(a) The field lines and equipotentials for 
Problem I and (b) the corresponding 24 equally spaced contours of space charge density for the case 
p = 1. (iii)(a) The held lines and equipotentials for Problem I and (b) the corresponding 24 equally 
spaced contours of space charge density for the case p = 0.1. 
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(i) (ii) 

b b 

FIG. 9. (i)(a) The field lines and equipotentials for Problem I and (b) the corresponding 24 equally 
spaced contours of space charge density for the case p = 1, a = 0.1. (ii)(a) The field lines and equipoten- 
tials for Problem I and (b) the corresponding 24 equally spaced contours of space charge density for the 
case p=l, a=0.5. 

in the successive iterates of a($). The results are displayed in Fig. 8, 9, and 10, and 
the associated values of (p* are given in Table II. 

For Problem I calculations were performed for a variety of values of p0 and c( 
with /3 = 1.0. The results are displayed in Figs. 8, 9, and 10. We see from Fig. 8 that 
the effect of increasing the space charge on the right-hand cylinder is to cause the 
space charged region to increase in size with the saddle point moving away from 
the charged conductor. With a space charge density of 10 on the right-hand con- 
ductor the saddle point moved to approximately x=0.8. We found that as the 
space charge on the right-hand conductor increased the saddle point moved 
monotonically towards the uncharged conductor and its position tended to 
approximately 0.8. We attribute this change in position of the saddle point to the 

FIG. 10. (i)(a) The field lines and equipotentials calculated for Problem II and (b) the corresponding 
25 equally spaced contours of space charge density for the case p,, = 10, c( = 0.05, y + 00.7. (ii)(a) The 
field lines and equipotentials calculated for Problem II and (b) the corresponding 25 equally spaced 
contours of space charge density for the case pO= 1, ~(=0.05, y=O.7. (iii)(a) The field lines and equi- 
potentials calculated for Problem II and (b) the corresponding 25 equally spaced contours of space 
charge density for the case p0 = 0.1, G( = 0.05, y = 0.7. (iv) The field lines and equipotentials calculated for 
Problem II for the case pa = 0, a = 0.05, y = 0.7. (v)(a) The field lines and equipotentials calculated for 
Problem II and (b) the corresponding 25 equally spaced contours of space charge density for the case 
p,,= 10, a=O.l, y=O.6. (vi)(a) The field I’ mes and equipotentials calculated for Problem II and (b) the 
corresponding 25 equally spaced contrours of space charge density for the case p0 = 1, x = 0.2, ‘/ = 0.6. 
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FIG. 10-Continued 
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Figure ‘p* 

8.1 0.3447 
8.2 0.4151 
8.3 0.4739 

9.1 0.5233 
9.2 0.3203 

10.1 0.1288 
10.2 0.1488 
10.3 0.1788 
10.4 0.1854 
10.5 0.0438 
10.6 0.0146 

mutual repulsion of the field lines due to the presence of the space charge. At the 
same time the value of (p* decreased and tended to a limiting value of approximately 
0.34. From Figs. 8 and 9 it is clear that the presence of the space charge decreases 
the electric field strength at the charged conductor and to a lesser extent increases 
the electric field on the earthed plate. In the latter case this increase is consistent 
with the decrease in the value of ‘p* with increasing space charge on the conductor. 
These effects are most apparent in Fig. S(i), where p0 = 10 for which the field in the 
space charged region is less at the conductor than at the earthed plate. Further, in 
the space charge free region the electric field is greater at the conductor than the 
earthed plate. 

In Figs. 8(ii), 9(i), and 9(ii) and Tables I and II we consider the effect of changing 
the radius of the charged conductor alone; the value of p0 is unity in each case. In 
the absence of space charge the effect of reducing the size of the right-hand conduc- 
tor is that it causes the saddle point in the electric potential to move towards it. 
However, it is clear from these figures that the inclusion of space charge opposes 
this effect. We have also carried out calculations relevant to the CERL experimental 
precipitator. This consists of an array of conductors of radius 3 mm at a potential 
of -45 kV between two grounded parallel plates separated by 300 mm. The value 
of p,,, the space charge density at the conductor surface, was taken to be 
100 &rnm3. Our calculations agreed very favourably with the experimental results, 
prediting the observed current to within 5 %. 

In Figs. 10 and Table II we display the results of our calculations for Problem II. 
In this case our method was less successful. The equipotentials and field lines lose 
orthogonality near the cylinder on the side adjacent to the saddle point. We tried 
various parameterisations of the conductor than the uniform one shown in Figs. 10, 
as well as other weighting functions w and o but to no effect, the non-orthogonality 
persisted and the value of cp* showed some dependence on these factors. It is clear 
that it is the presence of the saddle point that is the ultimate cause of the difficulty 
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150 m m  

FIG. Il. The experimental rig of an electrostatic preciptator used in the experiments conducted by 
Corbin 191. 

which is exacerbated by the very small values of ‘p*, which results in a very non- 
uniform grid. This is borne out by observing that this nonorthogonality becomes 
more apparent as q* decreases. However, we believe the solutions are otherwise 
satisfactory. Similar effects are observed as in Problem 1, resulting in a shadow in 
the space charge upon the grounded plate, due to the repulsion of charge away 
from the uncharged conductor. The extent of space charge shadow decreases as the 
space charge density on the charged plate increases. Further, a space charge bound- 
ary layer forms on the charged conductor as the space charge increases for both 
Problems I and II. 

In Figs. 8, 9, and 10 for the space charge density a slight discontinuity in the 
gradient of the space charge is apparent near the saddle point. We attribute this 

0 50 100 150 

Position along the earthed pbte in mm. 

FIG. 12. The current density distribution along the earthed plate; 0 represent experimental values 
and solid lines represent calculated values. 



SPACE-CHARGE PROBLEM 27 

feature to the linear interpolation used by our contouring algorithm which 
produces significant errors when the points in the (x, y)-plane are sparsely dis- 
tributed. 

We have also conducted a series of numerical experiments using this algorithm 
for a realistic experimental electrostatic precipitator configuration used by the 
CEGB [9]. In this we consider a row of barbed electrodes 150 m m  apart at a 
potential of 50 kV placed between two grounded plates separated by 300 m m . The 
situation is illustrated in Fig. 11. For this calculation we prescribe the electric field 
to be 3 MVm ~ ’ and employ the modified algorithm described at the end of 
Section 3.2. In Fig. 12 we present a graph of both the calculated and experimental 
current distribution obtained by Corbin [9] along the grounded plates. These 
results are in very good agreement; in particular, the pronounced dip in the current 
density m idway between the electrodes is well represented. 

6. CONCLUSIONS 

We have shown how the hodograph method develop by Budd and Wheeler [6] 
may be extended to multiply connected regions. This method has many advantages; 
primarily, that it is able to cope well with the m ixed type of the space charge equa- 
tions by separating the hyperbolic and elliptic components of the equation. Further, 
it does not rely on the specific shapes of the conductors and grounded surfaces for 
its implementation. It also provides as a spin-off a new method for calculating 
orthogonal grids on multiply connected and simply connected regions. It is par- 
ticularly suitable for this purpose as it directly calculates the coordinate values of 
the nodes of such a mesh and, further, the mesh generated may be modified by 
altering the value of the space charge. Details of orthogonal mesh generation for 
multiply connected regions are given in Thompson et al. [28]. In that paper the 
functions cp(x, y) and tj(x, y) again represent the coordinate lines of the mesh but 
the functions a($) and o(cp, $) described in this paper are replaced by more general 
user defined functions which allow control over the mesh spacing throughout the 
domain. The solution of the space charge problem can thus be viewed (almost) as 
a subset of the set of problems related to mesh generation. However, it is evident 
from this paper that the particular structure of the space-charge problem, and in 
particular the description of the function o(cp, rl/) by the simple ordinary differential 
equation (3.4b) allows us to use a rapidly convergent algorithm to generate an 
orthogonal mesh. To illustrate this we present in Figs. 13a and b two orthogonal 
body-fitted meshes generated by the space charge algorithm described in Budd and 
Wheeler [6] for simply or one connected domain for a configuration comprising 
the nose cone of an aircraft placed inside a cylindrical container. Both calculations 
took about 1 m in cpu time on a VAX 1 l/780. Although our algorithm does not 
allow quite the same freedom in prescribing the mesh as Thompson’s technique we 
do have two easily varied factors at our disposal. Namely, the distribution of the 
field lines on the nose cone of the aircraft (which is assumed to be the conductor 
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FIG. 13. Orthogonal grid using the space charge algorithm for the case of an aircraft nose cone in 
a cylindrical domain using two different space charge distributions on the nose cone. 

at a high potential) and also the distribution of the space charge there. In general, 
the higher the space charge the wider apart will be the resulting field lines due to 
the mutual repulsion of the space charge flowing along these lines. Thus our algo- 
rithm appears to be both an effective means of solving the space charge problem 
and of generating meshes on which quite different problems may be solved. 
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